Exercise 69

Is there a number that is exactly 1 more than its cube?

Solution

A number that is exactly 1 more than its cube satisfies

$$
x=x^{3}+1 .
$$

Bring all terms to one side.

$$
0=x^{3}-x+1
$$

The function $f(x)=x^{3}-x+1$ is a polynomial, so it's continuous everywhere on its domain by Theorem 7. Find a number x for which the function is negative, and find a number x for which the function is positive.

$$
\begin{aligned}
& f(-2)=-5 \\
& f(-1)=1
\end{aligned}
$$

$f(x)$ is continuous on the closed interval $[-2,-1]$, and $N=0$ lies between $f(-2)$ and $f(-1)$. By the Intermediate Value Theorem, then, there exists a root within $-2<x<-1$. Therefore, there is a number that is exactly 1 more than its cube.

